An Energy Efficient Instruction Window for Scalable Processor Architecture
نویسندگان
چکیده
Modern microprocessors achieve high application performance at the acceptable level of power dissipation. In terms of power to performance trade-off, the instruction window is particularly important. This is because enlarging the window size achieves high performance but naive scaling of the conventional instruction window can severely increase the complexity and power consumption. In this paper, we propose lowpower instruction window techniques for contemporary microprocessors. First, the small reorder buffer (SROB) reduces power dissipation by deferred allocation and early release. The deferred allocation delays the SROB allocation of instructions until their all data dependencies are resolved. Then, the instructions are executed in program order and they are released faster from the SROB. This results in higher resource utilization and low power consumption. Second, we replace a conventional issue queue by a direct lookup table (DLT) with an efficient tag translation technique. The translation scheme resolves the instruction dependency, especially for the case of one producer to multiple consumers. The efficiency of the translation scheme stems from the fact that the vast majority of instruction dependency exists within a basic block. Experimental results show that our proposed design reduces the power consumption significantly for SPEC2000 benchmarks. key words: instruction window, superscalar, low-power microarchitecture, reorder buffer, issue queue
منابع مشابه
Ultra-Low-Energy DSP Processor Design for Many-Core Parallel Applications
Background and Objectives: Digital signal processors are widely used in energy constrained applications in which battery lifetime is a critical concern. Accordingly, designing ultra-low-energy processors is a major concern. In this work and in the first step, we propose a sub-threshold DSP processor. Methods: As our baseline architecture, we use a modified version of an existing ultra-low-power...
متن کاملPartition the Banks, not the Functionality, of Large-Window Load/Store Queues
Designing scalable memory ordering hardware is one of the most important challenges for large-window, out-of-order processor design, due to its complexity, power, and its criticality for high performance. Recent research has aimed to partition the functionality of load/store queues (LSQ) into three components: ordering violations detection, value forwarding, and store buffering for commit, to a...
متن کاملCheckpoint Processing and Recovery: An Efficient, Scalable Alternative to Reorder Buffers
0272-1732/03/$17.00 2003 IEEE Published by the IEEE computer Society Achieving high performance in modern microprocessors requires a combination of exposing large amounts of instruction level parallelism (ILP) and processing instructions at a high clock frequency. Exposing maximum ILP requires the processor to operate concurrently on large numbers of instructions, also known as the instructio...
متن کاملScalable and Flexible heterogeneous multi-core system
Multi-core system has wide utility in today’s applications due to less power consumption and high performance. Many researchers are aiming at improving the performance of these systems by providing flexible multi-core architecture. Flexibility in the multi-core processors system provides high throughput for uniform parallel applications as well as high performance for more general work. This fl...
متن کاملOptimizing Window Size and its Sunshade in Four Main Directions of Residential Buildings in Mild Climate by Integrating Thermal and Lighting Analysis
As part of sustainable architecture principles and practices, designers need to define building's architectural requirements based on climatic conditions, environmental preservation and reduction in energy consumption. The natural energy sources such as solar radiation affect thermal and lighting performances of buildings depending on its facade characteristics. Traditionally, buildings thermal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEICE Transactions
دوره 91-C شماره
صفحات -
تاریخ انتشار 2008